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Abstract

Existing secret management techniques demand users memorize complex passwords, store convoluted
recovery phrases, or place their trust in a specific service or hardware provider. We have designed a novel
protocol that combines existing cryptographic techniques to eliminate these complications and reduce
user complexity to recalling a short PIN. Our protocol specifically focuses on a distributed approach to
secret storage that leverages Oblivious Pseudorandom Functions (OPRFs) and a Secret-Sharing Scheme (SSS)
combined with self-destructing secrets to minimize the trust placed in any singular server. Additionally,
our approach allows for servers distributed across organizations, eliminating the need to trust a singular
service operator. We have built an open-source implementation of the client and server sides of this new
protocol, the latter of which has variants for running on commodity hardware and secure hardware.
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1 Introduction
Services are increasingly attempting to provide their users with strong, end-to-end encrypted privacy
features, with the direct goal of preventing the service operator from accessing user data. In such systems,
the user is generally given the role of managing a secret key to decrypt and encrypt their data. Secret
keys tend to be long, not memorable, and difficult for a user to reliably reproduce, by design. The burden
of this complexity becomes particularly apparent when the user must enter their key material on a new
device.

Techniques like seed phrases [1] provide some simplification to this process but still result in long and
unmemorable strings of words that a user has to manage. Alternative approaches to key management
such as passkeys [2] reduce the user burden but ultimately require that a user still have access to a device
containing the key material or otherwise backup their key material with a third party they trust.

We have designed the Juicebox Protocol to solve these problems. It allows the user to recover their secret
material by remembering a short PIN, without having access to any previous devices or placing their trust
in any single party.

Specifically, this protocol:
1. Keeps user burden low by allowing recovery through memorable low-entropy PINs, while main-

taining similar security to solutions utilizing high-entropy passwords.
2. Never gives any service access to a user’s secret material or PIN.
3. Distributes trust across mutually distrusting services, eliminating the need to trust any singular

server operator or hardware vendor.
4. Prevents brute-force attacks by self-destructing secrets after a fixed number of failed recoveries.
5. Allows auditing of secret access attempts.

Juicebox provides open-source implementations for both the client and server on GitHub [3].

2 Overview
A protocol client distributes their secrets across n mutually distrusting services that implement the Juice-
box Protocol. For this paper, we will refer to each service that a secret can be distributed to as an abstract
realm, elaborated upon in Section 2.1.

The overall security of the protocol is directly related to the set of n realms you configure your client
with. Adding a realm to your configuration generally results in a net increase in security.

Figure 1: A configuration for a fictional tenant “Acme” demonstrating various realm types, operators, and
their trust boundaries.
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When adding a realm to your configuration, some important questions to ask are:
• Who has access to the data stored on that realm? (referred to as a trust boundary going forward)
• Does that trust boundary overlap with other realms in your configuration? If so, adding this realm

may reduce your overall security.

Configurations of realms are used in threshold-based operations. A threshold is a definition of how many
realms must participate for a secret to be recovered. Configuring a 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 < 𝑛 allows increased avail-
ability of secrets when using a configuration with a larger size since not all realms are required to be
operational or in agreement for the operation to succeed.

2.1 Realms
A realm is a service capable of storing a distributed share of a user’s secret. This section describes the two
types of realms that we have implemented and the trust boundaries associated with each type.

A realm is defined by the following information:

id:
A 16-byte identifier uniquely representing this realm across all configured realms.

index:
An integer from 1..N that uniquely identifies the realm’s position in a configuration.

address:
The fully qualified network address for connecting to the service.

publicKey:
An optional 32-byte public key used to establish secure communications for hardware realms, where
the realm controls a matching private key. See Section 5.4 for more details.

A hardware realm is a type of realm backed by secure hardware — specifically a hardware security module
(HSM). Hardware realms provide tight trust boundaries as only the HSM and the code it executes must
be trusted. This difference is visible in Figure 1.

A software realm is a type of realm that runs on commodity hardware in common cloud providers. When
paired with hardware realms, they are a valuable low-cost tool for increasing the number of trust bound-
aries within a configuration.

2.2 Tenants
Each realm allows the storage and recovery of secrets from users spanning multiple organizational
boundaries. We refer to each of these organizational boundaries as a tenant, and the protocol as defined
ensures that any individual tenant can only perform operations on user secrets within their organiza-
tional boundary. We utilize this multi-tenanted approach for realms as it reduces the costs of running
realms by dividing the costs of operation across multiple tenants.

3 Cryptographic Primitives
As a prerequisite to defining the protocol, we must define several cryptographic primitives that the pro-
tocol relies upon. Each of these is abstractly described, as the fundamental details of their implementation
may evolve. For specific algorithms that we recommend as of the writing of this paper, see Section 6.
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3.1 Secret-Sharing Scheme (SSS)
A secret-sharing scheme is a cryptographic primitive that allows a secret to be divided into multiple
shares, which are then distributed among different participants. Only by collecting a minimum number
of shares — typically determined by a threshold specified during share creation — can the original secret
be reconstructed. This approach provides a way to securely distribute and protect sensitive information
by splitting it into multiple fragments that individually reveal nothing about the original secret.

For this paper, we will define the following abstract functions for creating and reconstructing shares:

𝑪𝒓𝒆𝒂𝒕𝒆𝑺𝒉𝒂𝒓𝒆𝒔(𝒏, 𝒕𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅, 𝒔𝒆𝒄𝒓𝒆𝒕):
Distributes a secret into an ordered list of n shares that can be recovered when threshold are provided.

𝑹𝒆𝒄𝒐𝒗𝒆𝒓𝑺𝒉𝒂𝒓𝒆𝒔(𝒊𝒏𝒅𝒆𝒙𝒆𝒅𝑺𝒉𝒂𝒓𝒆𝒔):
Recovers a secret from y indexedShares where each contains a corresponding index from 1..N and
share. If an invalid combination of shares is provided, an incorrect secret will be returned that is
indistinguishable from random.

3.2 Oblivious Pseudorandom Functions (OPRFs)
An OPRF is a cryptographic primitive that enables a server to securely evaluate a function on a client’s
input. This evaluation ensures the server learns nothing about the client’s input and the client learns
nothing about the server’s key beyond the output of the function.

For this paper, we will define an OPRF exchange with the following abstract functions:

𝑶𝒑𝒓𝒇𝑩𝒍𝒊𝒏𝒅(𝒊𝒏𝒑𝒖𝒕):
Performs the blinding step for the input value and returns the blindedInput and blindingFactor. This
blindedInput is sent from the client to the server.

𝑶𝒑𝒓𝒇𝑩𝒍𝒊𝒏𝒅𝑬𝒗𝒂𝒍𝒖𝒂𝒕𝒆(𝒌𝒆𝒚, 𝒃𝒍𝒊𝒏𝒅𝒆𝒅𝑰𝒏𝒑𝒖𝒕):
Performs the evaluation step for the blindedInput and returns the blindedResult. This blindedResult is
sent from the server to the client.

𝑶𝒑𝒓𝒇𝑭𝒊𝒏𝒂𝒍𝒊𝒛𝒆(𝒃𝒍𝒊𝒏𝒅𝒆𝒅𝑹𝒆𝒔𝒖𝒍𝒕, 𝒃𝒍𝒊𝒏𝒅𝒊𝒏𝒈𝑭𝒂𝒄𝒕𝒐𝒓, 𝒊𝒏𝒑𝒖𝒕):
Performs the finalization step to unblind the blindedResult using the blindingFactor and the input and
returns the result.

𝑶𝒑𝒓𝒇𝑬𝒗𝒂𝒍𝒖𝒂𝒕𝒆(𝒌𝒆𝒚, 𝒊𝒏𝒑𝒖𝒕):
Computes the unblinded result directly bypassing the oblivious exchange.

3.3 Threshold OPRFs (T-OPRFs)
A T-OPRF combines OPRFs and a secret-sharing scheme into a hybrid primitive that facilitates a highly-
efficient oblivious exchange of an input across a threshold set of servers, allowing the computation of a
single secret result without revealing that result to the servers. The correctness of the result can be verified
utilizing a commitment computed during evaluation and finalization.

For this paper, we will define a T-OPRF exchange with the following abstract functions:

𝑻𝑶𝒑𝒓𝒇𝑲𝒆𝒚𝑺𝒉𝒂𝒓𝒆𝒔(𝒏, 𝒕𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅, 𝒓𝒐𝒐𝒕𝑲𝒆𝒚):
Returns n shares of a rootKey with the specified threshold. Each key share is sent to one server. This
function is an alias of CreateShares.

𝑻𝑶𝒑𝒓𝒇𝑩𝒍𝒊𝒏𝒅(𝒊𝒏𝒑𝒖𝒕):
Performs the blinding step for the input value and returns the blindedInput and blindingFactor. This
blindedInput is sent from the client to each server. This function is an alias of OprfBlind.
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𝑻𝑶𝒑𝒓𝒇𝑩𝒍𝒊𝒏𝒅𝑬𝒗𝒂𝒍𝒖𝒂𝒕𝒆(𝒌𝒆𝒚𝑺𝒉𝒂𝒓𝒆, 𝒃𝒍𝒊𝒏𝒅𝒆𝒅𝑰𝒏𝒑𝒖𝒕):
Performs the evaluation step for the blindedInput and returns the blindedResult. This blindedResult is
sent from each server to the client. This function is an alias of OprfBlindEvaluate.

𝑻𝑶𝒑𝒓𝒇𝑭𝒊𝒏𝒂𝒍𝒊𝒛𝒆(𝒊𝒏𝒅𝒆𝒙𝒆𝒅𝑩𝒍𝒊𝒏𝒅𝒆𝒅𝑹𝒆𝒔𝒖𝒍𝒕𝒔, 𝒃𝒍𝒊𝒏𝒅𝒊𝒏𝒈𝑭𝒂𝒄𝒕𝒐𝒓, 𝒊𝒏𝒑𝒖𝒕):
Performs the finalization step to unblind the set of indexedBlindedResults returned from at least
threshold servers and returns a result and a commitment that can be used to validate that result at
a later point. If incorrect or insufficient shares of indexedBlindedResults are present, the returned
values will be indistinguishable from random. TOprfFinalize can be implemented as OprfFinalize(Re-
coverShares(indexedBlindedResults), blindingFactor, input) and splitting the result.

𝑻𝑶𝒑𝒓𝒇𝑬𝒗𝒂𝒍𝒖𝒂𝒕𝒆(𝒓𝒐𝒐𝒕𝑲𝒆𝒚, 𝒊𝒏𝒑𝒖𝒕):
Computes the unblinded result and commitment directly bypassing the oblivious exchange. The com-
mitment can be sent to the servers to validate the result received from TOprfFinalize at a later date.
TOprfEvaluate can be implemented as OprfEvaluate(rootKey, input) and splitting the result.

3.4 Robust T-OPRFs with Zero-Knowledge Proofs (ZKPs)
A ZKP is a cryptographic primitive that enables one party to demonstrate the truth of a statement to
another party without revealing any additional information. Integrating ZKPs with T-OPRFs contributes
to the protocol’s robustness against misbehaving realms.

For this paper, we will define a ZKP with the following abstract functions:

𝑻𝑶𝒑𝒓𝒇𝑷𝒓𝒐𝒐𝒇𝑮𝒆𝒏𝒆𝒓𝒂𝒕𝒆(𝒑𝒓𝒊𝒗𝒂𝒕𝒆𝑲𝒆𝒚, 𝒑𝒖𝒃𝒍𝒊𝒄𝑲𝒆𝒚, 𝒃𝒍𝒊𝒏𝒅𝒆𝒅𝑰𝒏𝒑𝒖𝒕, 𝒃𝒍𝒊𝒏𝒅𝒆𝒅𝑶𝒖𝒕𝒑𝒖𝒕):
Returns a proof demonstrating that a server performed TOprfBlindEvaluate with a trusted privateKey,
without revealing the privateKey.

𝑻𝑶𝒑𝒓𝒇𝑷𝒓𝒐𝒐𝒇𝑽𝒆𝒓𝒊𝒇𝒚(𝒑𝒓𝒐𝒐𝒇, 𝒑𝒖𝒃𝒍𝒊𝒄𝑲𝒆𝒚, 𝒃𝒍𝒊𝒏𝒅𝒆𝒅𝑰𝒏𝒑𝒖𝒕, 𝒃𝒍𝒊𝒏𝒅𝒆𝒅𝑶𝒖𝒕𝒑𝒖𝒕):
Validates a proof to confirm that a server generated the correct blindedOutput from the blindedInput
using the privateKey associated with a trusted publicKey.

3.5 Digital Signature Algorithm (DSA)
A DSA is a cryptographic primitive that facilitates the generation and verification of digital signatures.
These signatures rely on a key pair, comprised of a private signing key and a corresponding public veri-
fying key. While the signing key is kept confidential and used for signing messages, the verifying key is
openly shared to verify signatures.

For this paper, we will define a DSA with the following abstract functions:

𝑵𝒆𝒘𝑺𝒊𝒈𝒏𝒊𝒏𝒈𝑲𝒆𝒚():
Returns a random private signingKey.

𝑮𝒆𝒏𝒆𝒓𝒂𝒕𝒆𝑺𝒊𝒈𝒏𝒂𝒕𝒖𝒓𝒆(𝒔𝒊𝒈𝒏𝒊𝒏𝒈𝑲𝒆𝒚, 𝒎𝒆𝒔𝒔𝒂𝒈𝒆, 𝒄𝒐𝒏𝒕𝒆𝒙𝒕):
Signs the combined message and context using the signingKey and returns a signedMessage that con-
tains the signature, verifyingKey, and original message.

𝑽𝒆𝒓𝒊𝒇𝒚𝑺𝒊𝒈𝒏𝒂𝒕𝒖𝒓𝒆(𝒔𝒊𝒈𝒏𝒆𝒅𝑴𝒆𝒔𝒔𝒂𝒈𝒆, 𝒄𝒐𝒏𝒕𝒆𝒙𝒕):
Verifies the signature was created with the private signingKey associated with the public verifyingKey
for the specified message and context.

3.6 Additional Primitives
In addition to the previously established primitives, the following common primitives are necessary to
define the protocol:
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𝑬𝒏𝒄𝒓𝒚𝒑𝒕(𝒆𝒏𝒄𝒓𝒚𝒑𝒕𝒊𝒐𝒏𝑲𝒆𝒚, 𝒑𝒍𝒂𝒊𝒏𝒕𝒆𝒙𝒕, 𝒏𝒐𝒏𝒄𝒆):
Returns an authenticated encryption of plaintext with encryptionKey. The encryption is performed
with the given nonce.

𝑫𝒆𝒄𝒓𝒚𝒑𝒕(𝒆𝒏𝒄𝒓𝒚𝒑𝒕𝒊𝒐𝒏𝑲𝒆𝒚, 𝒄𝒊𝒑𝒉𝒆𝒓𝒕𝒆𝒙𝒕, 𝒏𝒐𝒏𝒄𝒆):
Returns the authenticated decryption of ciphertext with encryptionKey or an error if decryption fails.
The decryption is performed with the given nonce.

𝑲𝑫𝑭(𝒅𝒂𝒕𝒂, 𝒔𝒂𝒍𝒕, 𝒊𝒏𝒇𝒐):
Returns a fixed 64-byte value that is unique to the input data, salt, and info.

𝑴𝑨𝑪(𝒏, 𝒌𝒆𝒚, *𝒊𝒏𝒑𝒖𝒕𝒔):
Returns an n-byte tag by combining the key with the provided inputs. The MAC function should
encode the inputs unambiguously.

𝑹𝒂𝒏𝒅𝒐𝒎(𝒏):
Returns n random bytes. The Random function should ensure the generation of random data with
high entropy, suitable for cryptographic purposes.

𝑺𝒄𝒂𝒍𝒂𝒓(𝒔𝒆𝒆𝒅):
Returns a scalar created from a 64-byte seed value.

𝑷𝒖𝒃𝒍𝒊𝒄𝑲𝒆𝒚(𝒔𝒄𝒂𝒍𝒂𝒓):
Computes the point representing the public key for a given scalar.

4 Protocol
The Juicebox Protocol can be abstracted into three simple operations:

Register: A two-phase operation that a new user takes to store a PIN-protected secret. A registration
operation is also performed to change a user’s PIN or register a new secret for an existing user.

1. In phase 1, the client checks that at least y realms are available to store the user’s secret, where
𝑦 ≥ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑.

2. In phase 2, the client prepares and updates the registration state on each realmi.

Recover: A three-phase operation that an existing user takes to recover a PIN-protected secret.

1. In phase 1, the client checks that a threshold of realms with consensus on version is available to
recover the secret.

2. In phase 2, the client performs a T-OPRF exchange on the identified realms using an input derived
from the user’s PIN.

3. In phase 3, the client uses the T-OPRF result to derive tags for each realm that proves it knows
the correct PIN. Then, each realm returns information that the client uses to reconstruct the user’s
secret.

Delete: A single-phase operation that reverts a user’s registration state to NotRegistered.

4.1 Functionality
The protocol uses the above operations, along with the previously defined primitives, to provide the fol-
lowing functionality:

Prevent online brute-force attacks:
Realms limit the number of unsuccessful recovery attempts to prevent online brute-force attacks
against the user’s PIN (and OPRF key shares). Each realm independently increments an attempted
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guess count in phase 2 of recovery and disallows recoveries beyond the limit specified during regis-
tration. This counter is reset to zero in phase 3 of recovery if the client proves it knows the correct
PIN.

Audit events:
In phase 2 of recovery, a threshold of realms can log that a recovery is being attempted. For a suc-
cessful recovery, a threshold of realms can log during phase 3 that the client proved it knew the
correct PIN before the client could access their secret.

Store arbitrary secrets:
The user stores a secret of their choosing, which provides flexibility to integrate with external sys-
tems. The user can also re-register with a new PIN, without changing the secret. To provide this
flexibility, the recovered secret cannot be based on the T-OPRF result, which is pseudo-random and
changes with every registration and PIN. Instead, the client stores the user’s secret in an encrypted
format during registration. In phase 3 of recovery, once the client proves it knows the correct PIN,
it retrieves the encrypted secret, along with shares of a component of the encryption key.

Increase offline brute-force costs:
As an additional layer of security, the client generates a unique salt per registration and combines
this with the user’s PIN using a KDF. A portion of the KDF output is utilized as the T-OPRF input and
as a seed for the key used to encrypt a user’s secret. An adversary who has compromised a threshold
of realms would need to additionally spend resources to brute-force each user’s PIN to access the
secret. Using a resource-intensive KDF further increases the adversary’s costs. The random salt also
serves as the registration’s version and is retrieved during phase 1 of recovery.

Exclude misbehaving realms:
The protocol adds a layer of robustness to detect misbehaving realms and prevent them from inter-
fering with recovery. This allows the client to proceed with recovery as long as a threshold number
of correct realms are available, even if some realms are returning incorrect or adversarial results. It
also allows the client to distinguish an incorrect PIN from incorrect realm behavior (otherwise, the
T-OPRF result appears incorrect for both cases).

The protocol combines a few techniques to provide robustness:
• The client generates a signature of each realm’s public OPRF key and ID during registration,

then discards the signing key (so that it cannot be used again). During phase 2 of recovery, the
client identifies a threshold of realms that agree on a verifying key with valid signatures for their
public OPRF key corresponding to that verifying key.

• Each realm generates a ZKP in phase 2 of recovery. The proof allows the client to verify that the
realm computed its share of the T-OPRF consistently with its OPRF key share.

• During registration, the client unobliviously evaluates the T-OPRF for the user’s PIN using the
root OPRF key. A copy of the resulting public commitment is stored with each realm. During
phase 2 of recovery, the client identifies a threshold of realms that agree on a commitment to
recover from. It then verifies that the T-OPRF finalization produces a matching commitment.
This prevents a colluding threshold of realms from substituting different OPRF key shares and
signatures without knowing the PIN.

• The client stores a secondary commitment based on the T-OPRF result, the encrypted secret,
and that realm’s share of the encryption key with each realm during registration. During phase
3, the client verifies that the information about the user’s secret returned from each realm is
consistent with the commitment stored during registration.
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4.2 Realm State
Realmi will store a record indexed by the combination of the registering user’s identifier (UID, as defined
in Section 4.6) and their tenant’s name. This ensures that a given tenant may only authorize operations
for its users.

This record can exist in one of three states:

NotRegistered:
The user has no existing registration with this realm. This is the default state if a user has never
communicated with the realm.

Registered:
The user has registered secret information with this realm and can still attempt to recover that reg-
istration.

NoGuesses:
The user has registered secret information with this realm, but can no longer attempt to recover that
registration.

A user transitions into the NoGuesses state when the number of attemptedGuesses on their registration
equals or exceeds their allowedGuesses, self-destructing the registered data.

In the Registered state, the following additional information is stored corresponding to the registration:

version:
A 16-byte value that uniquely identifies this registration for this user across all configured realms.
The version is random so that a malicious realm can’t force a client to run out of versions. The version
is also used as a salt that is combined with the user’s PIN.

oprfPrivateKeysi:
A realm-specific OPRF private key derived by secret sharing a random root key.

unlockKeyCommitment:
A 32-byte value derived during registration from the OPRF result used to verify the unlockKey.

oprfSignedPublicKeyi:
A signed public key that corresponds to the oprfPrivateKeysi for this realm. Wraps the publicKey, a
signature, and the public verifyingKey for the signingKey used to generate the signature.

unlockKeyTagi:
A tag unique to this realmi derived during registration from the unlockKey. The client will reconstruct
this tag during recovery to prove knowledge of the PIN and be granted access to the secret.

encryptionKeyScalarSharesi:
A single share of the random scalar used to derive the encryptionKey for the user’s secret. Even if
threshold shares were recovered, the encryptionKey cannot be derived without knowing the user’s
PIN.

encryptedSecret:
A copy of the user’s encrypted secret.

encryptedSecretCommitmenti:
A MAC derived from the unlockKey, realmid, encryptionKeyScalarSharesi, and encryptedSecret. Dur-
ing recovery, the client can reconstruct this MAC to verify if realmi has returned a valid share and
secret.
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allowedGuesses:
The maximum number of guesses allowed before the registration is permanently deleted by the
realmi.

attemptedGuessesi:
The number of times recovery has been attempted on realmi without success. Starts at 0 and increases
on recovery attempts, then reset to 0 on successful recoveries.

4.3 Registration
The registration operations are exposed by the client in the following form:

𝑒𝑟𝑟𝑜𝑟 = 𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟(𝑝𝑖𝑛, 𝑠𝑒𝑐𝑟𝑒𝑡, 𝑎𝑙𝑙𝑜𝑤𝑒𝑑𝐺𝑢𝑒𝑠𝑠𝑒𝑠, 𝑢𝑠𝑒𝑟𝐼𝑛𝑓𝑜)

pin:
This argument contains a potentially low entropy value known to the user that will be used to re-
cover their secret, such as a 4-digit PIN.

secret:
This argument contains the secret value a user wishes to persist.

allowedGuesses:
This argument specifies the number of failed attempts a user can make to recover their secret before
it is permanently deleted.

userInfo:
This argument contains per-user data that is combined with the random salt used to stretch the
user’s PIN.

error:
An error in registration, such as insufficient available realms.

The following sections contain Python code that demonstrates in detail the work performed by each
phase.

For this code, we assume that the protocol client has been appropriately configured with:
• n mutually distrusting realms, each of which will be referred to as realmi

• 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ≤ 𝑛 indicating how many realms must be available for recovery to succeed

4.3.1 Phase 1 Registration
An empty register1 request is sent from the client to each realmi.

A realm should always be expected to respond OK to this request unless a transient network error occurs.

Once a client has completed Phase 1 on y realms, it will proceed to Phase 2.

4.3.2 Phase 2 Registration
The following demonstrates the work a client performs to prepare a new registration:

  def PrepareRegister2(pin, secret, userInfo, realms, threshold):
    version = Random(16)

    stretchedPin = KDF(pin, version, userInfo)
    accessKey = stretchedPin[0:32]
    encryptionKeySeed = stretchedPin[32:64]

    oprfRootPrivateKey = Scalar(Random(64))
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    oprfPrivateKeys = TOprfKeyShares(len(realms), threshold, oprfRootPrivateKey)

    unlockKeyCommitment, unlockKey = TOprfEvaluate(oprfRootPrivateKey, accessKey)

    signingKey = NewSigningKey()

    oprfSignedPublicKeys = [GenerateSignature(signingKey, PublicKey(key), realm.id)
                            for key, realm in zip(oprfPrivateKeyShares, realms)]

    encryptionKeyScalar = Scalar(Random(64))
    encryptionKeyScalarShares = CreateShares(len(realms),
                                             threshold,
                                             encryptionKeyScalar)
    encryptionKey = MAC(32,
                        encryptionKeySeed,
                        "Encryption Key",
                        encryptionKeyScalar)

    # A `nonce` of 0 can be used since `encryptionKey` changes with each registration
    encryptedSecret = Encrypt(secret, encryptionKey, 0)

    encryptedSecretCommitments = [MAC(16,
                                      unlockKey,
                                      "Encrypted Secret Commitment",
                                      realm.id,
                                      share,
                                      encryptedSecret)
                                  for realm, share in zip(realms, encryptionKeyScalarShares)]

    unlockKeyTags = [MAC(16, unlockKey, "Unlock Key Tag", realm.id)
                     for realm in realms]

    return (
        version,
        oprfPrivateKeys,
        unlockKeyCommitment,
        oprfSignedPublicKeys,
        encryptionKeyScalarShares,
        encryptedSecret,
        encryptedSecretCommitments,
        unlockKeyTags
    )

A register2 request is then sent from the client to each realmi that contains the prepared:
• version
• oprfPrivateKeysi

• unlockKeyCommitment
• oprfSignedPublicKeysi

• encryptionKeyScalarSharesi

• encryptedSecret
• encryptedSecretCommitmentsi
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• unlockKeyTagsi

• allowedGuesses

Upon receipt of a register2 request, realmi creates or overwrites the user’s registration state with the cor-
responding values from the request and resets the attemptedGuesses to 0.

A realm should always be expected to respond OK to this request unless a transient network error occurs.

The registration operation completes successfully with at least y OK responses.

4.4 Recovery
The recovery operations are exposed by the client in the following form:

𝑠𝑒𝑐𝑟𝑒𝑡, 𝑒𝑟𝑟𝑜𝑟 = 𝑟𝑒𝑐𝑜𝑣𝑒𝑟(𝑝𝑖𝑛, 𝑢𝑠𝑒𝑟𝐼𝑛𝑓𝑜)

pin:
This argument represents the same value used during register.

userInfo:
This argument represents the same value used during register.

secret:
The recovered secret, as provided during registration, if and only if the correct PIN was provided and
no error was returned.

error:
An error in recovery, such as an invalid PIN or the allowedGuesses having been exceeded.

The following sections contain Python code that demonstrates in detail the work performed by each
phase.

For this code, we assume that the protocol client has been appropriately configured with:
• n mutually distrusting realms, each of which will be referred to as realmi

• 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ≤ 𝑛 indicating how many realms must be available for recovery to succeed

4.4.1 Phase 1 Recovery
An empty recover1 request is sent from the client to each realmi.

The following demonstrates the work a realmi performs to process the request:

  def Recovery1(state, request):
    if state.isRegistered():
      if state.attemptedGuesses >= state.allowedGuesses:
        state.transitionToNoGuesses()
        return Error.NoGuesses()

      return Ok(state.version)
    elif state.isNoGuesses():
      return Error.NoGuesses():
    elif state.isNotRegistered():
      return Error.NotRegistered()

An OK response from this phase should always be expected to return the following information from the
user’s registration:

• version
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Once a client has completed Phase 1 on at least threshold realmi that agree on version, it will proceed to
Phase 2 for those realms. If no realms are in agreement, the client will assume that the user is NotRegis-
tered on any realm.

4.4.2 Phase 2 Recovery
The following demonstrates the work a client performs to prepare for Phase 2:

  def PrepareRecovery2(pin, userInfo, realms, version, salt):
    stretchedPin = KDF(pin, salt, userInfo)
    accessKey = stretchedPin[0:32]
    encryptionKeySeed = stretchedPin[32:64]

    blindedAccessKey, blindingFactor = TOprfBlind(accessKey)

    return (
      accessKey,
      encryptionKeySeed,
      blindedAccessKey,
      blindingFactor
    )

A recover2 request is then sent from the client to each realmi that contains the previously determined:
• version
• blindedAccessKey

The following demonstrates the work a realmi performs to process the request:

  def Recovery2(state, request):
    if state.isRegistered():
      if state.attemptedGuesses >= state.allowedGuesses:
        state.transitionToNoGuesses()
        return Error.NoGuesses()
      if request.version != state.version:
        return Error.VersionMismatch()

      blindedResult = TOprfBlindEvaluate(state.oprfPrivateKey, request.blindedAccessKey)
      blindedResultProof = TOprfProofGenerate(state.oprfPrivateKey,
                                              state.oprfPublicKey,
                                              request.blindedAccessKey,
                                              blindedResult)

      state.attemptedGuesses += 1

      return Ok(blindedResult,
                blindedResultProof,
                state.oprfSignedPublicKey,
                state.unlockKeyCommitment,
                state.allowedGuesses,
                state.attemptedGuesses)
    elif state.isNoGuesses():
      return Error.NoGuesses():
    elif state.isNotRegistered():
      return Error.NotRegistered()
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An OK response from this phase should always be expected to return the following information:
• blindedResult
• blindedResultProof
• oprfSignedPublicKeysi

• unlockKeyCommitment
• allowedGuesses
• attemptedGuesses

This phase will proceed until a client has completed it on at least threshold realmi that:
1. agree on an unlockKeyCommitment and verifyingKey for the oprfSignedPublicKeys
2. each have a valid oprfSignedPublicKeysi:

  VerifySignature(oprfSignedPublicKey, realm.id)
3. each have a valid blindedResultProof for the blindedResult:

  TOprfProofVerify(
    blindedResultProof,
    oprfSignedPublicKey.publicKey,
    blindedAccessKey,
    blindedResult
  )

If this cannot be completed on threshold realms, the client may need to re-register or try again later.

If completed successfully, the client will attempt to recover the unlockKey.

The following demonstrates the work the client performs to reconstruct and validate the unlockKey:

  def RecoverUnlockKey(
    blindingFactor,
    accessKey,
    unlockKeyCommitment,
    blindedResults,
    allowedGuesses,
    attemptedGuesses,
    realms
  ):
    indexedBlindedResults = [(realm.index, result)
                             for realm, result in zip(realms, blindedResults)]
    ourUnlockKeyCommitment, unlockKey = TOprfFinalize(
      indexedBlindedResults,
      blindingFactor,
      accessKey
    )

    if ConstantTimeEquals(ourUnlockKeyCommitment, unlockKeyCommitment):
      return unlockKey
    else:
      guessesRemaining = min([x - y for x, y in zip(allowedGuesses, attemptedGuesses)])
      return Error.InvalidPin(guessesRemaining)

If the unlockKey could be recovered successfully, the client will proceed to Phase 3. Otherwise, an Invalid-
Pin error will be returned by the client.
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4.4.3 Phase 3 Recovery
The following demonstrates the work a client performs to prepare for Phase 3:

  def PrepareRecovery3(realms, unlockKey):
    unlockKeyTags = [MAC(16, unlockKey, "Unlock Key Tag", realm.id)
                     for realm in realms]
    return unlockKeyTags

A recover3 request is then sent from the client to each realmi that contains the previously determined:
• version
• unlockKeyTagsi

The following demonstrates the work a realmi performs to process the request:

  def Recovery3(state, request):
    if state.isRegistered():
      if request.version != state.version:
        return Error.VersionMismatch()

      if !ConstantTimeEquals(request.unlockKeyTags, state.unlockKeyTags):
        guessesRemaining = state.allowedGuesses - state.attemptedGuesses

        if guessesRemaining == 0:
          state.transitionToNoGuesses()

        return Error.BadUnlockKeyTag(guessesRemaining)

      state.attemptedGuesses = 0

      return Ok(state.encryptionKeyScalarShare,
                state.encryptedSecret,
                state.encryptedSecretCommitment)
    elif state.isNoGuesses():
      return Error.NoGuesses():
    elif state.isNotRegistered():
      return Error.NotRegistered()

An OK response from this phase should always be expected to return the following information from the
user’s registration state:

• encryptionKeyScalarSharesi

• encryptedSecret
• encryptedSecretCommitmentsi

A BadUnlockKeyTag response from this phase should always be expected to return the previously deter-
mined:

• guessesRemaining

Upon receipt of threshold OK responses, the client can reconstruct the user’s secret.

The following demonstrates the work a client performs to do so:

  def RecoverSecret(encryptionKeySeed,
                    encryptionKeyScalarShares,
                    encryptedSecret,
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                    encryptedSecretCommitments,
                    realms,
                    threshold):
    indexedEncryptionKeyScalarShares = []

    for share, commitment, realm in
      zip(encryptionKeyScalarShares,
          encryptedSecretCommitments,
          realms):
      ourCommitment = MAC(16,
                          unlockKey,
                          "Encrypted Secret Commitment",
                          realm.id,
                          share,
                          encryptedSecret)
      if ConstantTimeEquals(ourCommitment, commitment):
        indexedEncryptionKeyScalarShares.append((realm.index, share))

    if len(validEncryptionKeyScalarShares) < threshold:
      return Error.Assertion()

    encryptionKeyScalar = RecoverShares(indexedEncryptionKeyScalarShares)
    encryptionKey = MAC(32,
                        encryptionKeySeed,
                        "Encryption Key",
                        encryptionKeyScalar)

    secret = Decrypt(encryptionKey, encryptedSecret, 0)
    return secret

4.5 Deletion
The delete operation is exposed by the client in the following form:

𝑒𝑟𝑟𝑜𝑟 = 𝑑𝑒𝑙𝑒𝑡𝑒()

error:
An error in delete, such as a transient network error.

This operation does not require the user’s PIN as a user can always register a new secret effectively delet-
ing any existing secrets.

4.5.1 Phase 1 Deletion
An empty delete request is sent from the client to each realmi.

Upon receipt of a delete request, realmi sets the user’s registration state to NotRegistered.

A realm should always be expected to respond OK to this request unless a transient network error occurs.

4.6 Authentication
To enforce tenant boundaries and prevent unauthorized clients from self-destructing a user’s secret, a
given realmi requires authentication proving that a user has permission to perform operations.
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A realmi aims to know as little as possible about users and consequently relies on individual tenants to
determine whether or not a user is allowed to perform operations.

To delegate this control to tenants, a realm operator must generate a random 32-byte signing key
(𝑠𝑖𝑔𝑛𝑖𝑛𝑔𝐾𝑒𝑦 = 𝑅𝑎𝑛𝑑𝑜𝑚(32)) for each tenant they wish to access their realmi. This signing key should
be provided an integer version v and the tenant should be provided a consistent alphanumeric name ten-
antName that is shared by both the realm operator and the tenant.

Given this information, a tenant must vend a signed JSON Web Token (JWT) [4] to grant a given user
access to the realm.

The header of this JWT must contain a kid field of tenantName:v so that the realmi knows which version
v of tenantName’s signing key to validate against.

The claims of this JWT must contain an iss field equivalent to tenantName and a sub field that represents
a persistent user identifier (UID) the realm can use for storing secrets. Additionally, an aud field must be
present and contain a single hex-string equivalent to the realmi(id) a token is valid for.

A realmi must reject any connections that:
1. Don’t contain an authentication token
2. Aren’t signed with a known signing key for a given tenantName and version v matching the kid
3. Don’t have an aud exactly matching their realmi(id)

4. Don’t contain an iss matching the tenantName in the kid

The operations defined in the prior sections assume all requests contain valid authentication tokens for
a given realmi or that an InvalidAuthentication (401) error is returned by the realm.

5 Security Considerations
5.1 Threshold Configuration
While any 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ≤ 𝑛 is valid, we recommend a 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 > 𝑛

2  which ensures that there can be only
at most one valid secret for a user at a time, avoiding uncertainty during Phase 1 of recovery.

Additionally, a 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 > 1 (and consequently 𝑛 > 1) should always be used, as the security guaran-
tees this protocol provides only apply when secrets are distributed across multiple realms.

5.2 Hardware Realms
We specifically utilize HSMs that are programmable with non-volatile memory. Encapsulating the pro-
tocol operations within the hardware’s trusted execution environment (TEE) assures that a malicious
operator has no avenue of access. Non-volatile memory is required to prevent an operator from rolling
back realm state, which could prevent the self-destruction of secrets. The HSMs we use also allow some
authorized form of programming, such that an operator can prove that a specific and verifiable version
of the protocol is being executed within the TEE.

Hardware realms assume that a combination of relatively opaque hardware and firmware is secure, which
— outside of the Juicebox Protocol — makes them not ideal as a standalone secret storage solution. How-
ever, when used in configuration with other types of realms — including hardware realms from other
vendors — these risks can be mitigated.
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5.3 Software Realms
Since these realms only control an encrypted share of a user’s secret, we believe it is an acceptable tradeoff
that they require extending the trust boundary to include the realm’s operator and hosting provider. It is
important to recognize that given the limited number of distinct hosting providers currently operating,
overuse of such realms can potentially put too much secret information in one party’s control and jeop-
ardize user secrets.

5.4 Realm Communication
Communication with a realm always occurs over a secure protocol that ensures the confidentiality and
integrity of requests while limiting the possibility of replay attacks. Towards this end, all requests to a
realm are made over TLS.

Hardware realms terminate this TLS connection outside of their trust boundary. This allows a single load
balancer to service multiple HSMs but necessitates an additional layer of secure communication between
the client and the HSM. For this layer, we use the Noise Protocol [5] with an NK-handshake pattern with
the realm’s public key. Specifically, we use the protocol name Noise_NK_25519_ChaChaPoly_BLAKE2s.

5.5 Low-Entropy PINs
While the protocol provides strong security guarantees for low entropy PINs, using a higher entropy PIN
provides increased security if a threshold of realms was compromised.

5.6 Salting
The register and recover operations accept a userInfo argument that is mixed into the salt before passing
it to the KDF. Using a known constant, like the UID, for this value can prevent a malicious realm from
returning a fixed salt with a pre-computed password table.

6 Recommended Cryptographic Algorithms
6.1 SSS
The protocol relies on a secret-sharing scheme to ensure a realm does not gain access to the user’s secret.
We utilize the scheme defined by Shamir [6] over the Ristretto255 group [7].

6.2 OPRFs
The protocol utilizes OPRFs based on 2HashDH as defined by Jarecki et al. [8]. These operations are per-
formed over the Ristretto255 group [7] and utilize the SHA-512 hashing algorithm [9].

6.3 T-OPRFs
The protocol utilizes T-OPRFs based on 2HashTDH as defined by Jarecki et al. [10]. These operations are
performed over the Ristretto255 group [7] and utilize the SHA-512 hashing algorithm [9].

6.4 Robust OPRFs with ZKPs
The protocol utilizes ZKPs to allow a client to verify the server used a specific private key during the
execution of the protocol. Our implementation of these proofs specifically utilizes a Chaum-Pedersen
DLEQ with a Fiat-Shamir transform, as defined by Jarecki et al. [8]. These operations are performed over
the Ristretto255 group [7] and utilize the SHA-512 hashing algorithm [9].
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6.5 DSA
The protocol utilizes a cryptographic signature to validate the public key used by each realm. We utilize
Ed25519, an Edwards-curve Digital Signature Algorithm (EdDSA) [11].

6.6 KDF
The protocol relies on a KDF function to add entropy to the user’s PIN. When an expensive KDF is utilized,
this provides an additional layer of protection for low entropy PINs if a threshold of realms were to be
compromised. For this reason, we utilize Argon2 [12].

Determining the appropriate configuration parameters for Argon2 is highly dependent on the limitations
of your client hardware. Additionally, since users may register and recover secrets across multiple devices,
a given user is specifically limited by the weakest device they expect to use. An intelligent client could
potentially adjust a user’s hashing strength based on the performance of their registered devices. This
only works if you can assure new devices for that user only get more performant, which may be difficult
to guarantee.

For the common case, we have evaluated performance across popular smartphones and browsers circa
2019 and defined the following recommended parameters:¹

¹Parts of this evaluation were performed in 2019 at the Signal Foundation as part of their Secure Value Recovery project.

• Utilize Argon2id to defend against timing and GPU attacks
• Utilize parallelism of 1 (limited primarily by browser-based threading)
• Utilize 32 iterations
• Utilize 16 KiB of memory (limited primarily by low-end Android devices)

We believe this combination of parameters provides a reasonable balance between performance — a user
will not wait minutes to register a secret — and security.

A client may always re-register utilizing new parameters to provide stronger guarantees in the future.

6.7 Secret Encryption
The protocol relies on an authenticated Encrypt and Decrypt function to ensure that the user’s PIN is
required to access the secret value, even if secret shares are compromised. We utilize ChaCha20 and
Poly1305 [13].

6.8 MAC
The protocol relies on a MAC function to compute various values for future validation. We utilize
BLAKE2s-MAC-256 [14].

7 Acknowledgments
• The protocol is heavily based on design and feedback from Trevor Perrin and Moxie Marlinspike.
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